LSDA+ U study on the electronic and anti-ferromagnetic properties of Ni-doped CuO and Cu-doped NiO
نویسندگان
چکیده
منابع مشابه
Magnetic Properties of NiO and MnO by LSDA+U
The spin (ms) and orbital (mo) magnetic moment of the antiferromagnetic NiO and MnO have been studied in the local spin density approximation (LSDA+U) within full potential linear muffin-tin orbital (FP-LMTO method with in the coulomb interaction U varying from 0 to 10eV, exchange interaction J, from 0 to 1.0eV, and volume compression VC in range of 0 to 80%. Our calculated results shown that t...
متن کاملinvestigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولSynthesis of Cu Doped NiO Nanoparticles by Chemical Method
The Cu doped NiO (NiO:Cu) nanoparticles were synthesized by co-precipitation method using NiCl2.6H2O, CuCl2.2H2O for Ni and Cu sources, respectively. Sodium hydroxide has been used as a precipitator agent. Effect of Cu doping agent on the structural and optical properties of nanostructures were characterized by XRD, SEM, AFM, spectrophotometry, FTIR a...
متن کاملAb initio study of properties of Co- and Cu- doped Ni-Mn-Ga alloys
The influence of Co and Cu doping on Ni-Mn-Ga alloy is investigated using the first-principles exact muffin-tin orbital method in combination with the coherent-potential approximation. The energy difference between the austenite (A) and the nonmodulated (NM) martensite ΔEA-NM depends linearly on the Cu concentration and distribution, with a minimum for all Cu at Mn sites and a maximum for all C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Catalysis
سال: 2017
ISSN: 1872-2067
DOI: 10.1016/s1872-2067(17)62796-7